C.B. Carter, D.B. Williams (Eds.)

Transmission Electron Microscopy

Diffraction, Imaging, and Spectrometry

- Equips the reader with a clear and deep understanding of TEM, the essential tool for studying nanomaterials
- Presents advanced topics with the same look, feel, and approach that students already know from Williams & Carter
- Features chapters on diffraction, high-resolution imaging, and chemical mapping by the leading experts in the field
- Provides the fundamentals for students to understand and interpret the results of electron tomography and electron holography, even if they will not employ these techniques themselves

This text is a companion volume to *Transmission Electron Microscopy: A Textbook for Materials Science* by Williams and Carter. The aim is to extend the discussion of certain topics that are either rapidly changing at this time or that would benefit from more detailed discussion than space allowed in the primary text. World-renowned researchers have contributed chapters in their area of expertise, and the editors have carefully prepared these chapters to provide a uniform tone and treatment for this exciting material. The book features an unparalleled collection of color figures showcasing the quality and variety of chemical data that can be obtained from today’s instruments, as well as key pitfalls to avoid. As with the previous TEM text, each chapter contains two sets of questions, one for self assessment and a second more suitable for homework assignments. Throughout the book, the style follows that of Williams & Carter even when the subject matter becomes challenging—the aim is always to make the topic understandable by first-year graduate students and others who are working in the field of Materials Science.

Topics covered include sources, in-situ experiments, electron diffraction, Digital Micrograph, waves and holography, focal-series reconstruction and direct methods, STEM and tomography, energy-filtered TEM (EFTEM) imaging, and spectrum imaging. The range and depth of material makes this companion volume essential reading for the budding microscopist and a key reference for practicing researchers using these and related techniques.

Praise for Transmission Electron Microscopy: A Textbook for Materials Science by Williams and Carter:

“...highly readable, and an extremely valuable text for all users of the TEM at every level. Treat yourself to a copy!” — Microscopy and Microanalysis

“...the best textbook for this audience available.” — American Scientist

Order online at springer.com or for the Americas call (toll free) 1-800-SPRINGER or email us at: customerservice@springer.com. For outside the Americas call +49 (0) 6221-345-4301 or email us at: customerservice@springer.com.

The first € price and the £ and $ price are net prices, subject to local VAT. Prices indicated with * include VAT for books; the €(D) includes 7% for Germany, the €(A) includes 10% for Austria. Prices indicated with ** include VAT for electronic products: 19% for Germany, 20% for Austria. All prices exclusive of carriage charges. Prices and other details are subject to change without notice. All errors and omissions excepted.
More Praise for *Transmission Electron Microscopy: A Textbook for Materials Science* by Williams and Carter:

“This book is written in such a comprehensive manner that it is understandable to all people who are trained in physical science and it will be useful both for the expert as well as the student.” — Micron

“The book answers nearly any question - be it instrumental, practical, or theoretical - either directly or with an appropriate reference...This book provides a basic, clear-cut presentation of how transmission electron microscopes should be used and of how this depends specifically on one's specific undergoing project.” — MRS Bulletin

“It is truly a book so thoughtfully written that … it will provide a solid foundation for those studying material science….an outstanding book.” —IEEE Electrical Insulation Magazine, Vol. 26 (4), July/August, 2010

List of Contributors

C. Barry Carter
David B. Williams
Pieter Kruit
Katie Jungjohann
Grace Burke
Alwyn Eades
John Spence
Bernhard Schaffer
Michael Lehmann
Hannes Lichte

Andreas Thust
Sandra Van Aert
Dirk Van Dyck
Stephen J. Pennycook
Paul Midgley
Matthew Weyland
Paul Thomas
Vicki Keast
Ian Jones
Paul Kotula
Masashi Watanabe